39,237 research outputs found

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    Top-Down Induction of Decision Trees: Rigorous Guarantees and Inherent Limitations

    Get PDF
    Consider the following heuristic for building a decision tree for a function f:{0,1}n{±1}f : \{0,1\}^n \to \{\pm 1\}. Place the most influential variable xix_i of ff at the root, and recurse on the subfunctions fxi=0f_{x_i=0} and fxi=1f_{x_i=1} on the left and right subtrees respectively; terminate once the tree is an ε\varepsilon-approximation of ff. We analyze the quality of this heuristic, obtaining near-matching upper and lower bounds: \circ Upper bound: For every ff with decision tree size ss and every ε(0,12)\varepsilon \in (0,\frac1{2}), this heuristic builds a decision tree of size at most sO(log(s/ε)log(1/ε))s^{O(\log(s/\varepsilon)\log(1/\varepsilon))}. \circ Lower bound: For every ε(0,12)\varepsilon \in (0,\frac1{2}) and s2O~(n)s \le 2^{\tilde{O}(\sqrt{n})}, there is an ff with decision tree size ss such that this heuristic builds a decision tree of size sΩ~(logs)s^{\tilde{\Omega}(\log s)}. We also obtain upper and lower bounds for monotone functions: sO(logs/ε)s^{O(\sqrt{\log s}/\varepsilon)} and sΩ~(logs4)s^{\tilde{\Omega}(\sqrt[4]{\log s } )} respectively. The lower bound disproves conjectures of Fiat and Pechyony (2004) and Lee (2009). Our upper bounds yield new algorithms for properly learning decision trees under the uniform distribution. We show that these algorithms---which are motivated by widely employed and empirically successful top-down decision tree learning heuristics such as ID3, C4.5, and CART---achieve provable guarantees that compare favorably with those of the current fastest algorithm (Ehrenfeucht and Haussler, 1989). Our lower bounds shed new light on the limitations of these heuristics. Finally, we revisit the classic work of Ehrenfeucht and Haussler. We extend it to give the first uniform-distribution proper learning algorithm that achieves polynomial sample and memory complexity, while matching its state-of-the-art quasipolynomial runtime

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    The Meta-Theory of Q_0 in the Calculus of Inductive Constructions, Master\u27s Thesis, May 2006

    Get PDF
    The notion of a proof is central to all of mathematics. In the language of formal logic, a proof is a finite sequence of inferences from a set of axioms, and any statement one yields from such a finitistic procedure is called a theorem. For better or for worse, this is far from the form a traditional mathematical proof takes. Mathematicians write proofs that omit routine logical steps, and details deemed tangential to the central result are often elided. These proofs are fuzzy and human-centric, and a great amount of context is assumed on the part of the reader. While traditional proofs are not overly symbolic or syntactic, and hence are easily understood, such informal proofs are susceptible to logical errors -- Fermat\u27s Last Theorem and the Four Color Theorem being prime examples. In light of this, there has been significant interest in producing formal proofs of mathematical theorems: proofs in which every intermediate logical step is supplied. Drawing on ideas from Computational Logic, Type Theory and the theory of Automated Deduction, we are able to guaranteed the correctness of these proofs. The formalization of mathematics is an endeavor that has enjoyed very encouraging progress in recent years. Major achievements include the complete formalization of the Four Color Theorem, the Prime Number Theorem, Goedel\u27s Incompleteness Theorem, the Jordan Curve Theorem (all within the past five years!). This thesis presents our work in formalizing the meta-theory of Peter Andrews\u27 classical higher-order logic in a higher-order typed lambda calculus. Our development is a completely formal one -- in addition to formalizing logical meta-theory, we have also developed and formalized the syntactic meta-theory. Our syntactic meta-theory allows for the reasoning of notions such as variable occurrences, scope and variable binding, linear replacement, etc. Our formalization is carried out in the interactive proof assistant Coq, developed as part of the LogiCal Project in INRIA. Coq is built upon the Calculus of Inductive Constructions, an extension of Coquand and Huet\u27s seminal Calculus of Construction with support for inductive data types. As far as we know, this thesis presents the first effort to formalize Andrews\u27 logical system
    corecore